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We embody the density-matrix renormalization-gr¢DMRG) method for the 19-vertex model on a square
lattice in order to investigate the Berezinskii-Kosterlitz-Thouless transition. Elements of the transfer matrix of
the 19-vertex model are classified in terms of the total value of arrows in one layer of the square lattice. By
using this classification, we succeed in reducing enormously the dimension of the matrix that has to be
diagonalized in the DMRG method. We apply our method to the 19-vertex model with the interaction
K=1.0866 and obtailc=1.006(1) for the conformal anomalyS1063-651X97)03810-5

PACS numbd(s): 05.90+m, 02.70-c

[. INTRODUCTION hand, the value ofy/2 appears to be 0.1175), which is
smaller than the expected valgat the BKT transition point.

The = density-matrix _renormalization-groupDMRG) This suggests that the critical value kéf for the 19-vertex

method is developed to obtain eigenvalues of the Hamil-mOOIeI is smaller than 1.0866.

tonian matrix for one-dimensional quantum systg s This In Sec. Il we briefly explain the relation between the clas-
method enables us to investigate a finite system with a larggi.5; xy model and the 19-vertex model. In Sec. Il we
size by a numerical calculation of matrices, which can beexplain our method by which we can reduce the dimension
handled within recent computer resources such as memogf the transfer matrix in the DMRG method. In Sec. IV we
size and CPU speed. Recently, the DMRG method has be&how our results and discuss the conformal anomaly and the

applied to the transfer matrix of classical spin syst¢#jsin  smallest scaling dimension. Section V is a summary of the
the both cases of quantum systems and classical systenjsesent study.

each spin variable has a discrete degree of freedom. There-

fore, we have matrices with a finite dimension for these finite Il. 19-VERTEX MODEL

systems. On the other hand, the dimension of the transfer . . ) .
matrix becomes infinite for a finite system of spins with a1 N€ partition function of the 19-vertex model is derived
continuous degree of freedom such as a clasdidamodel,  rom that of theX'y model. Assigning Boltzmann weights to
Fortunately, it is known that th¥Y model on a square lat- 19 vertices, the 19-vertex model describesX¥model on

tice A is translated into a 19-vertex model for which the 2 Square lattice for each case with frustrations or without
S . . o frustrations. For spin variables, which take continuous values
transfer matrix is described in terms of the realization of

arrow variableg3]. An arrow variable takes three discrete like classicalXY spins or plane rotators, we have a transfer
' . matrix with an infinite dimension even for a finite system.
states. Hence the 19-vertex model is called a three-state Vefy . ..tore the barY model cannot be handled by a nu-

tex model. We can construct the transfer matrix with a flnltemerical diagonalization of the transfer matrix. On the other

dimension for a finite system of the 19-vertex model de-nq the 19-vertex model is described by discrete variables
scribed by the three-state variables. The 19-vertex model ig, ¢ express three kinds of arrows. Hence we can make a

solved by Zamolodchikov and Fatepd] in the case that itS  ransfer matrix with a finite dimension and apply the DMRG

Boltzmann weights satisfy the Yang-Baxter relation. Thisprocedure for a finite system. In order to demonstrate the

exact solution is generalized to tigestate vertex model by  efficiency of our approach to the BKT transition, we apply it

Sogoet al. [5,6]. When the Yang-Baxter relation is not sat- to the 19-vertex model without frustration for which the criti-

isfied, we do not have an exact solution yet for that systemcal behavior of the usual BKT transition has to be repro-

However, it is believed that a critical behavior of the 19- duced.

vertex model without frustration belongs to the same univer- Let us briefly explain the relation between t{& model

sality class as the Berezinskii-Kosterlitz-Thoule®®KT)  and the 19-vertex model on a square latticeThe partition

transition[3,7-9. function Zyy of the XY model on the square lattic& is
The purpose of the present paper is to embody the DMRGlefined as

method for the 19-vertex model and to show that the dimen- .

sion of matrices, which are diagonalized in the DMRG _ i oA

method, is reduced enormously by using the ice rule of the Zx kE[A ffw dekexp[ K(% coso =0~ Ay, ()

19-vertex mode[10]. We obtain a value of the conformal

anomaly ax=1.006(1) atk =1.0866, which is regarded as wherei, j, andk denote site indices); is an angle of th&X'Y

the BKT transition poin{3]. This value is consistent with a spin at sitel, andK is an interaction parameter, respectively.

value ofc expected at the BKT transition point. On the other The sumZ; ;, is taken over all nearest-neighbor pairs of
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sites. A bond parameter related to frustration between kites
and j is expressed by;;. The frustrationf is defined in |
terms of theA;; as *

WL =k/e WwW@=Kk/2 W@ =K?2 W#)=K/2
f

1
ﬂ; Aij 2

where the summatior®, is taken over an elementary I
plaquette. If the value df is a half odd integer, the plaquette *
has a frustration.

In a region of small parametdé¢, we expand the expo-
nential function in the partition function for th&Y model

wE) =k/2  wE)=Kk/2 WO =K/2 W) =K/2

given in Eq.(1). Hence let us start with the partition function I | *
Zl
o | | +
Z= H d HkH {1+Kcod 6,— 6;— Ajj)} W) =K/2 W) =K/2 W) =k/2 W(Q2)=K/2
keA J—-m (i,j)
+a K )
:H dng 1+Eexq|(9i_0]‘_Aij)} *
keA J—m {,j) +
+ gexp{ —i ( 0,— gj — Aij )}] . (3) W(13) = K?/4 W(14) = K*/4 W(15) = K?/4 W(16) = K*/4

The integrand of the patrtition functiafi has the W1) sym-
metry as well as that aZyy . The first term of the integrand
on the right-hand side of Eq3) is assigned to no arrow in

the 19-vertex model, the second term is assigned to an arrow o _ o wasy= k24 W) =1
pointing from sitel to sitej, and the third term is assigned to '
f'fm arrc,),w pointing from sitq to Slte". We use the word FIG. 1. Nineteen vertices permitted by the ice rule generalized
arrow” even for the case Qf no arrow in a bond. Only when . include no arrow on a bond.

the value of arrows going into a site is equal to the value of

arrows leaving the site does the weight of the arrow configu-

ration for the site survive after taking integrations .With re- Z:E’ H W(v)), (6)

spect to an angle oKY spin at the site. Otherwise the o} ieA

weights of the arrow configurations do not appear in the

partition function. In the six-vertex model, we have a similarwhere the summation is taken over all permitted configura-

rule to that mentioned abo\&0]. That rule is called the ice tions of the vertex on the lattica.

rule, whose name comes from the property of hydrogen ions

in an ice CFySta|- . . . IIl. DENSITY-MATRIX RENORMALIZATION-GROUP
The 19 kinds of arrow configurations on vertices are per{fiETHOD WITH RESTRICTIONS ON THE TOTAL VALUE
mitted by the ice rule, which is a generalization of the ice OF ARROWS

rule for the six-vertex model, when we include no arrow on ) )

a bond, as shown in Fig. 1. Hereafter we simply say the 19 Because there exists the ice rule for the 19-vertex model,
kinds of vertices instead of the 19 kinds of arrow configura-the transfer matrix, by which the partition functi@his ex-
tions on vertices. The vertex weigh¥(v;) depends on the Pressed, becomes a block-diagonal form. This block-

kind of vertexv;e{1,2, . ..,19 at sitei. The value ofy; is  diagonal form is obtained in terms of classification by the
determined by a configuration of four arrows as
vi=vi(a,Bi,7i,6), 4
whereq;, B;, v;, and §; denote arrows surrounding site ﬂ)
as shown in Fig. 2. Let us express an up and a right arrow by !

+1, a down and a left arrow by-1, and no arrow by O, N TN
respectively. For instance,(—1,0,0;+1)=1, as shown in @ Q/’J
Fig. 1. The ice rule is described in terms®f, B;, 7;, and

- ®

a;—Bi—vit+6=0. ©)

Using the weights for 19 vertices, we can describe the parti-
tion functionZ as FIG. 2. Four arrows surrounding a site
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FIG. 3. One layer that corresponds to the transfer matrix. The value of arrows going into the layer is equal to the number of those leaving
the layer. When a bond is shared by two vertices the summation for the variable on the bond is taken.

value of arrows going into one layer corresponding to the XW( (s, By, az,8)) W (a3, 73, 04,&3))
transfer matrix. The layer with lengthis shown in Fig. 3L

is the width of the system. We consider the system under  XW(v4(ay4,B4,21,64)), (12
periodic boundary conditions without frustration in this and
the following sections. (see Fig. 4, where the total value of arrows is obtained by

From the ice rule shown in Ed5) we have

] NN () Bt NeC) BN £0) 0Ny (83) 0o,
iZ;l(Cfi—,Bi_7’i+5i):0- (7
We denote arrows for a vertical bond at a renormalized ver-
Because of the relations tex as¢; or ;. The value of arrows included in the renor-
malized vertex is denoted by, (&;) for & or N,(%;) for #;;
Yi= a4, (Ii<L), (8  N,(&) andN,(#;) are equal tas; andg; at the initial step of
the DMRG procedure.
o 1= aq, 9 We denote an eigenvector of this transfer matrix by
(71,82, m3,B4), which corresponds to thkth eigen-
Eq. (7) becomes value. As the usual DMRG method, we construct the density
L L matrix p{} as
> B=2 6 (10
i=1 i=1

nglrr)(m)ﬂ;z,k(7]1132|§1v52)5 > UNk(71.82.73.84)
Here we note that Eq9) comes from the periodic boundary 73:P4
conditions. The relation given by EQLO) is a conservation N Q) S 14
law of the total value of arrows. Let us define the total value Nk €102, 75.B4). (19

of arrowsN in one layer as Notice that the density matrix is labeled By(#;) + 85, not

L by N. This is due to the fact thaj; and 3, are shared by two
NEE Bi. (12) eigenvectors constructing the density matrix, as shown in
i=1 Fig. 5. From Eq.(13) we obtainN,(7) + B>,=N,(&;) + &
) _and therefore the density matrix has a block-diagonal form,
Now the whole transfer matrix of the 19-vertex model is as well as the transfer matrix, where each block is classified
classified byN and hence has a block-diagonal form. Wepy the total value of arrows for the half system. This prop-
will explain this in detail in the following. erty of the density matrix is the reason why we can reduce

By using the property10), we reduce the number of cal- the dimension of the transfer matrix by our method intro-
culations in the DMRG method. We apply the infinite systemquyced in the present study.

method of the DMRG framework to the 19-vertex model. In
addition to the vertex weightV(v;) whose values are pro-
vided in Fig. 1, we define a renormalized weighit” (v ("),

wherev(" is a renormalized vertex andis the number of

o o n n
renormalizations. As an initial value, we 38t (v(?) to be @ @
equal toW(v;). The transfer matrix for the total value of I\ e N -
arrowsN is composed as @ NG NG NG CD

TN (71,8213, Bal é1.62,83.64) @ @

= Ea WO (@, 71, a,,61))

a 4 FIG. 4. Transfer matrix composed of weightsand W(".
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@[’J(\;,)k(ﬁl, 02,3, B1)

& &2 m

@—— =

771 /8 W(r+l)(alv ?7}17()‘375;)

2
(r)
L ¢N,k(771 s B2, 13, ﬁv
FIG. 6. Reconstruction oiV(") in terms of eigenvectors of the

density matrix with restriction of the value of arrows.

FIG. 5. Construction of the density matrix by a target stﬁ@
of the system#; and B, are shared by two eigenvectors. Therefore, vertex model with the restriction of the total value of arrows
we obtain a conservation rubé, (7,) + 8,=N;(£1) + 65. as mentioned above, we are able to make the systeni_size

increase systematically. The advantage of this method is that

In order to construct the renormalized vertex weightthe dimension of the transfer matrix decreases enormously
WD we diagonalize the density matrpg (n)+p,1 @nd by considering the conservation law of the value of arrows in
oo this DMRG method. However, we need a large enough value
) ) of min Eqg. (15) in order to obtain a good accuracy of nu-
use an eigenvector of the transfer matrix for the largest eimerical calculations for a large system size. The results for
genvaluek=1 as a target state. The renormalized vertéxhe m dependence of the present method for the BKT tran-
state is labeled by;; , which means thaVNr(mHBzvvi cor-  sition are discussed in the following section, along with the
other results obtained.

obtain its eigenvectorﬁ,\,r(m)wz,”i. In the present study we

responds to they;th eigenvalue Of)Nr(ﬂl)Jrﬁzvl' We deter-
mine the upper limil of »; as
IV. RESULTS FOR THE CONFORMAL ANOMALY

- 32 (gri2em) s AND THE SMALLEST SCALING DIMENSION

2
m  (3"=m), An example of the values &, (7;) in the case ofn=35,

wherem is the number of states taken into account for cal-~ 0> @dL=12 is shown in Table I. The values of; in
Table | are put in order according to the magnitude of the

culation of the density matrix. For example, at the initial stepei envalues of the density matrix. Because the width of this
of the DMRG method, that ig,=0, the value ol becomes 9 . y .
systemL is 12, ; represents five arrows. Therefore, the

2,rrv(;/\r/1v|;:h means that the renormalized arrgyincludes two value of N,(7,) can take one of—54,....0, ...:+4,
: +5}, as listed in the first column of Table I. Since we set
The_last step of th_e DMRG method _for the_19-vertexm:35l there is no eigenvalue of the density matrix with
model is the construction of the renormalized weight for the ' . :
N,(7;)==5. The crosses denote that there is no eigenvalue

vertex as of 7; greater than 35. When the value of arrows-igd, we
WD (1r+1>(a1 7 as,E) have_only one e|g(_anyalue, which is the 3_1$t e|genvalu¢ of the
density matrix. This is expressed lds(31)= —4 in the third

:% nlzﬁz 6%2 VNr(mHBzﬂ?i( 71.B2) TABLE |. Example of theN,(#;) structure in the case of
m=35, N=0, andL=12. The crosses denote that there is no ei-
XWO W (g, 71,02,6))W oz, Br,a3,8,)) genvalue ofy, greater than 35.
XV, 6+ 8,1 (€1,52).- (16 N(7) 7
This last step is illustrated in Fig. 6. The total value of ar- 2 XX X xooX X X
rows included in the renormalized vertex becomes —4 31 x X X X X X
-3 12 26 X X X X X
Ny 1(71) =Ne(72) + Bo. 1 -2 4 11 19 28 x X X
-1 2 8 15 17 23 33 34
We need alstV" "D (w{ (g, 75, a4,£5)) when we return o 1 6 9 14 21 22 29
to the first step of the DMRG method, but we do not need to+ 1 3 7 16 18 24 32 35
calculate it. Since in our method for the 19-vertex model thet 2 5 10 20 27 X X X
system has a translational symmetry, we can use 3 13 25 X X X X X
WDy as WD {1y Then we return to the 44 30 X % % % % X
first step represented by E@l2) in order to iterate the 45 X X X X X X X

DMRG procedure. By iterating this procedure for the 19-
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_0-215 T I T I T I T | T T T T T [ T T T T | T T T
% 20 — . T r = = =
- K=1.08660 2 1230 4 K=1.08660 ¢=1.00678 (m=81)
5151 FLmiL=alje ™ +b(r) 4 | -0.22 - +  m=27 —
:gw 0 m=35 |
3 T o m=50
- 0.188 i i A m=70 |
5t .
—0.22 73; \\..l,/ _ E 4 m=81
N ® 0% o1 o0z oz | -0.24 - —
= o)
g9 y I
v v v d
-0.26 T TR T R
-0.225 — — 0 0.1 0.2
L i 1/L
1 | 1 ] ) ] 1 ] 1
0 20 40 60 80 100 FIG. 8. Size dependence of the free energy of the 19-vertex
m model atk =1.0866. The estimated value of the conformal anomaly

] from this result isc=1.0061).
FIG. 7. m dependence of the free energy obtained by our

method. We use three kinds of fitting functions and obtain thee

< ; ' t al. [3], is shown in Fig. 8. We use the following size
smallest standard deviation by an exponential function.

dependencgll] of the free energy for the system with peri-

odic boundary conditions:
row of Table I. In the same way as b, (7;) = — 4, we have
two eigenvalues withN,(#7)=-3: N,(12)=-3 and 7C
N,(26)= —3, as shown in the fourth row of Table |. For FIL~f.— 6L2’ (18)

other values oN,(#,), a distribution ofz; is shown in the

same manner explained fof(7,)=—5, Ni(7)=—-4, and  \heref, denotes the free energy per site in the thermody-
N/(7)=—3. The largest eigenvalue corresponds tOnamic limit. We obtain the value of the conformal anomaly

N,(1)=0. For the case ah=35 given in Table |, the small-  55:—1.0041), which is consistent with the value ofat the

est eigenvalue corresponds toN,(34)=+1 and  yitical region.

N,(35)=—1. These two states are degenerate. In general The second largest eigenvalue of the transfer matrix be-
those two states withi(7;) # 0 are degenerate; we have an |ongs to a block withN=1. Hence the smallest scaling di-

eigenstate wittN,(7;) and an eigenstate with N(7;) al-  mension that is equivalent tg/2 is estimated by
ways. Therefore, an eigenstate distribution of the density ma-

trix is s ic wi i A
ymmetric with respect td, (7). 1) 0

The dimension of a matrix that has to be diagonalized in n2=Xg =5 5 ) (19)

the DMRG method is now enormously reduced by the 0

method mentioned in Sec. lll. Therefore, it becomes possible

(n) . . _
to handle large values @i by using our computer resources. wherel” expresses thith eigenvalue in thél=n sector

As an example we show a reduction of the dimension on the transfer matriX3]. The critical index» describes an

matrices of which the largest eigenvalues have to be CalCtglfgiitt)(;?;it(ijoeﬁaxtofhi C|3<3|2f$|?ri?1r;itf:il;|)r;ct|%ri\n|tn t?] é:r\l/t;cl:SLregmn
lated. In the case dfi=0, m=35, andL =12, the dimension ’ point, of

of a matrix is 3?=531441 for a simple transfer matrix has to bej. An interaction dependence af” is shown in

method. The dimension of the matrix reduces down to '9- 9- The results shown in Fig. 9 are obtained by using

(35x3)?=11 025 for the usual DMRG methdd,,2]. The

energy of the system. Tha dependence of the value of the B
free energy is shown in Fig. 7. We obtain a good conver- Se
gence with the value ah. In the case of =30, calculations o012
with m=314=4 782 969 give an exact diagonalization of the I
transfer matrix. Three kinds of fitting functions are used to fit [
them dependence. We obtain the smallest value of standard 01
deviation by using an exponential function. These results |
mean that the largest eigenvalue of the transfer matrix expo- N IS W ST Y NS S S S S—
nentially converges to an exact value by increasingven at 1 L1 12
the BKT transition point in our method.

The size dependence of the free enefgat K=1.0866, FIG. 9. Interaction dependence of the smallest scaling dimen-
which is regarded as the BKT transition point by Knopssionx" .

dimension of the matrix is now 1545 for our method intro- 0.16 —r—r——r—1—7T—T—T— T
duced in the present study. I m=27 A L=10 ]
The largest eigenvalue of the transfer matrix belongs to BN e ]
the block withN=0 in the whole transfer matrix. Hence the 0.14 _ka\ oz
largest eigenvalue wittN=0 is used to calculate the free 1 A\\\\\ —o— L=30
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i Sy i
v9=50.88930(1)
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soeli 44y
0 % 100
m

FIG. 10. m dependences of{) at K=1.0500 forlL = 40.

m=27 for eachL. In Fig. 9 we fail to obtain the valug of
x{M if we useK=1.0866: The value of/2 obviously ap-
pears to be smaller than 1/8 kit=1.0866.

We investigate am dependence of") atK = 1.0866 and
K=1.0500 up tom=120. Examples of extrapolations to
large values ofm by using the exponential function are
shown in Fig. 10. We defing{\V by

L
N)— N
m'= 2y Mo

(20

where )\g’f‘ni is the largest eigenvalue of the transfer matrix

with the value of arrow$N constructed by taking account of

m states of the density matrix. In order to obtain results tha

are equivalent to an exact diagonalization, we need a lar
value ofm, i.e., m=31°, for the largest system side=40,

which we treat. Therefore, we extrapolate the obtained re-.

sultsy™ to m= in Fig. 10. In Fig. 10 dashed lines are the
results of fitting by using values obtained fram= 70, 81,

100, and 120. The dotted lines are results of fitting by using

values fromm=50, 70, 81, 100, and 120. The difference
between the results obtained from these two extrapolations
shown as errors in Fig. 10. We evaluate the valug{pf by
yO—y® and obtain the valuex{’=0.1255(1) at
K=1.0500 forL =40.

In Figs. 11 and 12 we show the size dependenceg;'df
atK=1.0866 andK =1.0500, respectively. All points shown

in Figs. 11 and 12 are values estimated from extrapolations

of m as explained above. We observe that the valug{bf
goes to a finite value for large. The extrapolated value is
about 0.1175 and obviously less than 1/8 Kat1.0866.
Therefore,K=1.0866 is in the critical region. On the other
hand, it is found that the size dependence 3} at
K=1.0500 is stronger than that Et=1.0866, as shown in
Fig. 12. In addition, the value of{") increases beyond 1/8 as
the system sizeL increases. This result indicates that
K=1.0500 is out of the critical region.
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0.122 T T T T
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0.12

0.118} l 1

(1)

> EmBEﬂ.E-B'E--E

= 0.116}
0.114} 1

0.112r .

0.11

0.04 0.06 0.08

/L

0 0.02 0.1

FIG. 11. Size dependence xif’’= /2 atK = 1.0866. The value
of x{!) is expected to be 0.1175(5) for large which is obviously
below the 1/8 expected for the BKT transition point. The dashed
line is just a guide for the eye.

Thus these results & =1.0866 andK=1.0500 suggest
that the critical value oK of the 19-vertex model is between
K=1.0500 andK=1.0866. The determination of a precise
value of the critical poinK. is an interesting problem. How-
ever, this problem is beyond the purpose of the present
study. A further investigation for this point is left as a future
problem.

V. SUMMARY

We have succeeded in reducing enormously the dimen-
sion of the matrix to be diagonalized in the DMRG method
for the 19-vertex model by using the ice rule. It has been
found that them dependence of the free energy shows an
exponential convergence even near the BKT transition point

y using our method. An accurate result is obtained for the
onformal anomaly, i.e¢=1.006(1) near the BKT transi-

Yon point, by means of the present approach.

From the size dependence of the smallest scaling dimen-
sionx{Y (= 5/2) we have found thak =1.0866 belongs to

0.13 . . : :

K=1.0500
i A28ps ]

'S 0-128 . L=40
o126 ;
':‘,Q —————— hﬁsﬁ; ____________
= 0.124f e .
S
0.122} i
0.12} .
018002 004 006 008 0.1

UL

FIG. 12. Size dependence ®f"= /2 at K=1.0500. We ob-
serve a stronger size dependence than th&t-al.0866 and find
that the value is beyond 1/8. The dashed line is just a guide for the
eye.
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