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Density-matrix renormalization group for the Berezinskii-Kosterlitz-Thouless transition
of the 19-vertex model

Yasushi Honda and Tsuyoshi Horiguchi
Department of Computer and Mathematical Sciences, Graduate School of Information Sciences, Tohoku University,

Sendai 980-77, Japan
~Received 11 June 1997!

We embody the density-matrix renormalization-group~DMRG! method for the 19-vertex model on a square
lattice in order to investigate the Berezinskii-Kosterlitz-Thouless transition. Elements of the transfer matrix of
the 19-vertex model are classified in terms of the total value of arrows in one layer of the square lattice. By
using this classification, we succeed in reducing enormously the dimension of the matrix that has to be
diagonalized in the DMRG method. We apply our method to the 19-vertex model with the interaction
K51.0866 and obtainc51.006(1) for the conformal anomaly.@S1063-651X~97!03810-5#

PACS number~s!: 05.90.1m, 02.70.2c
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I. INTRODUCTION

The density-matrix renormalization-group~DMRG!
method is developed to obtain eigenvalues of the Ham
tonian matrix for one-dimensional quantum systems@1#. This
method enables us to investigate a finite system with a la
size by a numerical calculation of matrices, which can
handled within recent computer resources such as mem
size and CPU speed. Recently, the DMRG method has b
applied to the transfer matrix of classical spin systems@2#. In
the both cases of quantum systems and classical syst
each spin variable has a discrete degree of freedom. Th
fore, we have matrices with a finite dimension for these fin
systems. On the other hand, the dimension of the tran
matrix becomes infinite for a finite system of spins with
continuous degree of freedom such as a classicalXY model.
Fortunately, it is known that theXY model on a square lat
tice L is translated into a 19-vertex model for which th
transfer matrix is described in terms of the realization
arrow variables@3#. An arrow variable takes three discre
states. Hence the 19-vertex model is called a three-state
tex model. We can construct the transfer matrix with a fin
dimension for a finite system of the 19-vertex model d
scribed by the three-state variables. The 19-vertex mod
solved by Zamolodchikov and Fateev@4# in the case that its
Boltzmann weights satisfy the Yang-Baxter relation. Th
exact solution is generalized to theq-state vertex model by
Sogoet al. @5,6#. When the Yang-Baxter relation is not sa
isfied, we do not have an exact solution yet for that syst
However, it is believed that a critical behavior of the 1
vertex model without frustration belongs to the same univ
sality class as the Berezinskii-Kosterlitz-Thouless~BKT!
transition@3,7–9#.

The purpose of the present paper is to embody the DM
method for the 19-vertex model and to show that the dim
sion of matrices, which are diagonalized in the DMR
method, is reduced enormously by using the ice rule of
19-vertex model@10#. We obtain a value of the conforma
anomaly asc51.006(1) atK51.0866, which is regarded a
the BKT transition point@3#. This value is consistent with a
value ofc expected at the BKT transition point. On the oth
561063-651X/97/56~4!/3920~7!/$10.00
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hand, the value ofh/2 appears to be 0.1175(5), which is
smaller than the expected value1

8 at the BKT transition point.
This suggests that the critical value ofK for the 19-vertex
model is smaller than 1.0866.

In Sec. II we briefly explain the relation between the cla
sical XY model and the 19-vertex model. In Sec. III w
explain our method by which we can reduce the dimens
of the transfer matrix in the DMRG method. In Sec. IV w
show our results and discuss the conformal anomaly and
smallest scaling dimension. Section V is a summary of
present study.

II. 19-VERTEX MODEL

The partition function of the 19-vertex model is derive
from that of theXY model. Assigning Boltzmann weights t
19 vertices, the 19-vertex model describes theXY model on
a square lattice for each case with frustrations or with
frustrations. For spin variables, which take continuous val
like classicalXY spins or plane rotators, we have a trans
matrix with an infinite dimension even for a finite system
Therefore, the bareXY model cannot be handled by a nu
merical diagonalization of the transfer matrix. On the oth
hand, the 19-vertex model is described by discrete varia
that express three kinds of arrows. Hence we can mak
transfer matrix with a finite dimension and apply the DMR
procedure for a finite system. In order to demonstrate
efficiency of our approach to the BKT transition, we apply
to the 19-vertex model without frustration for which the cri
cal behavior of the usual BKT transition has to be rep
duced.

Let us briefly explain the relation between theXY model
and the 19-vertex model on a square latticeL. The partition
function ZXY of the XY model on the square latticeL is
defined as

ZXY5 )
kPL

E
2p

1p

dukexpH K(
^ i , j &

cos~u i2u j2Ai j !J , ~1!

wherei , j , andk denote site indices,u i is an angle of theXY
spin at sitei , andK is an interaction parameter, respective
The sum(^ i , j & is taken over all nearest-neighbor pairs
3920 © 1997 The American Physical Society
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56 3921DENSITY-MATRIX RENORMALIZATION GROUP FOR . . .
sites. A bond parameter related to frustration between siti
and j is expressed byAi j . The frustrationf is defined in
terms of theAi j as

f [
1

2p(
P

Ai j , ~2!

where the summation(P is taken over an elementar
plaquette. If the value off is a half odd integer, the plaquett
has a frustration.

In a region of small parameterK, we expand the expo
nential function in the partition function for theXY model
given in Eq.~1!. Hence let us start with the partition functio
Z,

Z5 )
kPL

E
2p

1p

duk)̂
i , j &

$11Kcos~u i2u j2Ai j !%

5 )
kPL

E
2p

1p

duk)̂
i , j &

H 11
K

2
exp$ i ~u i2u j2Ai j !%

1
K

2
exp$2 i ~u i2u j2Ai j !%J . ~3!

The integrand of the partition functionZ has the U~1! sym-
metry as well as that ofZXY . The first term of the integrand
on the right-hand side of Eq.~3! is assigned to no arrow in
the 19-vertex model, the second term is assigned to an a
pointing from sitei to site j , and the third term is assigned t
an arrow pointing from sitej to site i . We use the word
‘‘arrow’’ even for the case of no arrow in a bond. Only whe
the value of arrows going into a site is equal to the value
arrows leaving the site does the weight of the arrow confi
ration for the site survive after taking integrations with r
spect to an angle ofXY spin at the site. Otherwise th
weights of the arrow configurations do not appear in
partition function. In the six-vertex model, we have a simi
rule to that mentioned above@10#. That rule is called the ice
rule, whose name comes from the property of hydrogen i
in an ice crystal.

The 19 kinds of arrow configurations on vertices are p
mitted by the ice rule, which is a generalization of the i
rule for the six-vertex model, when we include no arrow
a bond, as shown in Fig. 1. Hereafter we simply say the
kinds of vertices instead of the 19 kinds of arrow configu
tions on vertices. The vertex weightW(v i) depends on the
kind of vertexv iP$1,2, . . . ,19% at sitei . The value ofv i is
determined by a configuration of four arrows as

v i5v i~a i ,b i ,g i ,d i !, ~4!

wherea i , b i , g i , andd i denote arrows surrounding sitei ,
as shown in Fig. 2. Let us express an up and a right arrow
11, a down and a left arrow by21, and no arrow by 0,
respectively. For instance,v i(21,0,0,11)51, as shown in
Fig. 1. The ice rule is described in terms ofa i , b i , g i , and
d i as

a i2b i2g i1d i50. ~5!

Using the weights for 19 vertices, we can describe the pa
tion functionZ as
w
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Z5(
$v i %

8 )
i PL

W~v i !, ~6!

where the summation is taken over all permitted configu
tions of the vertex on the latticeL.

III. DENSITY-MATRIX RENORMALIZATION-GROUP
METHOD WITH RESTRICTIONS ON THE TOTAL VALUE

OF ARROWS

Because there exists the ice rule for the 19-vertex mo
the transfer matrix, by which the partition functionZ is ex-
pressed, becomes a block-diagonal form. This blo
diagonal form is obtained in terms of classification by t

FIG. 1. Nineteen vertices permitted by the ice rule generali
to include no arrow on a bond.

FIG. 2. Four arrows surrounding a sitei .
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FIG. 3. One layer that corresponds to the transfer matrix. The value of arrows going into the layer is equal to the number of thos
the layer. When a bond is shared by two vertices the summation for the variable on the bond is taken.
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value of arrows going into one layer corresponding to
transfer matrix. The layer with lengthL is shown in Fig. 3;L
is the width of the system. We consider the system un
periodic boundary conditions without frustration in this a
the following sections.

From the ice rule shown in Eq.~5! we have

(
i 51

L

~a i2b i2g i1d i !50. ~7!

Because of the relations

g i5a i 11 ~1< i<L !, ~8!

aL115a1 , ~9!

Eq. ~7! becomes

(
i 51

L

b i5(
i 51

L

d i . ~10!

Here we note that Eq.~9! comes from the periodic boundar
conditions. The relation given by Eq.~10! is a conservation
law of the total value of arrows. Let us define the total va
of arrowsN in one layer as

N[(
i 51

L

b i . ~11!

Now the whole transfer matrix of the 19-vertex model
classified byN and hence has a block-diagonal form. W
will explain this in detail in the following.

By using the property~10!, we reduce the number of ca
culations in the DMRG method. We apply the infinite syste
method of the DMRG framework to the 19-vertex model.
addition to the vertex weightW(v i) whose values are pro
vided in Fig. 1, we define a renormalized weightW(r )(v i

(r )),
wherev i

(r ) is a renormalized vertex andr is the number of
renormalizations. As an initial value, we setW(0)(v i

(0)) to be
equal toW(v i). The transfer matrix for the total value o
arrowsN is composed as

TN
~r !~h1 ,b2 ,h3 ,b4uj1 ,d2 ,j3 ,d4!

5 (
a1 ,•••,a4

W~r !
„v1

~r !~a1 ,h1 ,a2 ,j1!…
e

er

e

3W„v2~a2 ,b2 ,a3 ,d2!…W~r !
„v3

~r !~a3 ,h3 ,a4 ,j3!…

3W„v4~a4 ,b4 ,a1 ,d4!…, ~12!

~see Fig. 4!, where the total value of arrowsN is obtained by

N5Nr~h1!1b21Nr~h3!1b45Nr~j1!1d21Nr~j3!1d4 .
~13!

We denote arrows for a vertical bond at a renormalized ver
tex asj i or h i . The value of arrows included in the renor-
malized vertex is denoted byNr(j i) for j i or Nr(h i) for h i ;
Nr(j i) andNr(h i) are equal tod i andb i at the initial step of
the DMRG procedure.

We denote an eigenvector of this transfer matrix by
cN,k

(r ) (h1 ,b2 ,h3 ,b4), which corresponds to thekth eigen-
value. As the usual DMRG method, we construct the densit
matrix r̂N,k

(r ) as

rNr ~h1!1b2 ,k
~r ! ~h1 ,b2uj1 ,d2![ (

h3 ,b4

cN,k
~r ! ~h1 ,b2 ,h3 ,b4!

3cN,k
~r ! ~j1 ,d2 ,h3 ,b4!. ~14!

Notice that the density matrix is labeled byNr(h1)1b2, not
by N. This is due to the fact thath3 andb4 are shared by two
eigenvectors constructing the density matrix, as shown i
Fig. 5. From Eq.~13! we obtainNr(h1)1b25Nr(j1)1d2
and therefore the density matrix has a block-diagonal form
as well as the transfer matrix, where each block is classifie
by the total value of arrows for the half system. This prop-
erty of the density matrix is the reason why we can reduc
the dimension of the transfer matrix by our method intro-
duced in the present study.

FIG. 4. Transfer matrix composed of weightsW andW(r ).
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In order to construct the renormalized vertex weig
W(r 11), we diagonalize the density matrixr̂Nr (h1)1b2,1 and

obtain its eigenvectorsVW Nr (h1)1b2 ,h
18
. In the present study we

use an eigenvector of the transfer matrix for the largest
genvaluek51 as a target state. The renormalized ver
state is labeled byh18 , which means thatVW Nr (h1)1b2 ,h

18
cor-

responds to theh18th eigenvalue ofr̂Nr (h1)1b2,1 . We deter-

mine the upper limitl of h18 as

l[H 3r 12 ~3r 12,m!

m ~3r 12>m!,
~15!

wherem is the number of states taken into account for c
culation of the density matrix. For example, at the initial st
of the DMRG method, that is,r 50, the value ofl becomes
9, which means that the renormalized arrowh18 includes two
arrows.

The last step of the DMRG method for the 19-vert
model is the construction of the renormalized weight for
vertex as

W~r 11!
„v1

~r 11!~a1 ,h18 ,a3 ,j18!…

5(
a2

(
h1 ,b2

(
j1 ,d2

VNr ~h1!1b2 ,h
18
~h1 ,b2!

3W~r !
„v1

~r !~a1 ,h1 ,a2 ,j1!…W„v2~a2 ,b2 ,a3 ,d2!…

3VNr ~j1!1d2 ,j
18
~j1 ,d2!. ~16!

This last step is illustrated in Fig. 6. The total value of a
rows included in the renormalized vertex becomes

Nr 11~h18!5Nr~h1!1b2 . ~17!

We need alsoW(r 11)
„v3

(r 11)(a3 ,h38 ,a4 ,j38)… when we return
to the first step of the DMRG method, but we do not need
calculate it. Since in our method for the 19-vertex model
system has a translational symmetry, we can
W(r 11)(v1

(r 11)) as W(r 11)(v3
(r 11)). Then we return to the

first step represented by Eq.~12! in order to iterate the
DMRG procedure. By iterating this procedure for the 1

FIG. 5. Construction of the density matrix by a target statecW N,k
(r )

of the system.h3 andb4 are shared by two eigenvectors. Therefo
we obtain a conservation ruleNr(h1)1b25Nr(j1)1d2.
t
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vertex model with the restriction of the total value of arrows
as mentioned above, we are able to make the system sizeL
increase systematically. The advantage of this method is th
the dimension of the transfer matrix decreases enormous
by considering the conservation law of the value of arrows in
this DMRG method. However, we need a large enough valu
of m in Eq. ~15! in order to obtain a good accuracy of nu-
merical calculations for a large system size. The results fo
the m dependence of the present method for the BKT tran
sition are discussed in the following section, along with the
other results obtained.

IV. RESULTS FOR THE CONFORMAL ANOMALY
AND THE SMALLEST SCALING DIMENSION

An example of the values ofNr(h i) in the case ofm535,
N50, andL512 is shown in Table I. The values ofh i in
Table I are put in order according to the magnitude of the
eigenvalues of the density matrix. Because the width of thi
systemL is 12, h i represents five arrows. Therefore, the
value of Nr(h i) can take one of$25,24, . . . ,0, . . . ,14,
15%, as listed in the first column of Table I. Since we set
m535, there is no eigenvalue of the density matrix with
Nr(h i)565. The crosses denote that there is no eigenvalu
of h i greater than 35. When the value of arrows is24, we
have only one eigenvalue, which is the 31st eigenvalue of th
density matrix. This is expressed asNr(31)524 in the third

,

FIG. 6. Reconstruction ofW(r ) in terms of eigenvectors of the
density matrix with restriction of the value of arrows.

TABLE I. Example of theNr(h i) structure in the case of
m535, N50, andL512. The crosses denote that there is no ei-
genvalue ofh i greater than 35.

Nr(h i) h i

25 3 3 3 3 3 3 3

24 31 3 3 3 3 3 3

23 12 26 3 3 3 3 3

22 4 11 19 28 3 3 3

21 2 8 15 17 23 33 34
0 1 6 9 14 21 22 29
11 3 7 16 18 24 32 35
12 5 10 20 27 3 3 3

13 13 25 3 3 3 3 3

14 30 3 3 3 3 3 3

15 3 3 3 3 3 3 3
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3924 56YASUSHI HONDA AND TSUYOSHI HORIGUCHI
row of Table I. In the same way as forNr(h i)524, we have
two eigenvalues with Nr(h i)523: Nr(12)523 and
Nr(26)523, as shown in the fourth row of Table I. Fo
other values ofNr(h i), a distribution ofh i is shown in the
same manner explained forNr(h i)525, Nr(h i)524, and
Nr(h i)523. The largest eigenvalue corresponds
Nr(1)50. For the case ofm535 given in Table I, the small-
est eigenvalue corresponds toNr(34)511 and
Nr(35)521. These two states are degenerate. In gen
those two states withNr(h i)Þ0 are degenerate; we have a
eigenstate withNr(h i) and an eigenstate with2Nr(h i) al-
ways. Therefore, an eigenstate distribution of the density
trix is symmetric with respect toNr(h i).

The dimension of a matrix that has to be diagonalized
the DMRG method is now enormously reduced by t
method mentioned in Sec. III. Therefore, it becomes poss
to handle large values ofm by using our computer resource
As an example we show a reduction of the dimension
matrices of which the largest eigenvalues have to be ca
lated. In the case ofN50, m535, andL512, the dimension
of a matrix is 3125531 441 for a simple transfer matri
method. The dimension of the matrix reduces down
(3533)2511 025 for the usual DMRG method@1,2#. The
dimension of the matrix is now 1545 for our method intr
duced in the present study.

The largest eigenvalue of the transfer matrix belongs
the block withN50 in the whole transfer matrix. Hence th
largest eigenvalue withN50 is used to calculate the fre
energy of the system. Them dependence of the value of th
free energy is shown in Fig. 7. We obtain a good conv
gence with the value ofm. In the case ofL530, calculations
with m531454 782 969 give an exact diagonalization of t
transfer matrix. Three kinds of fitting functions are used to
the m dependence. We obtain the smallest value of stand
deviation by using an exponential function. These res
mean that the largest eigenvalue of the transfer matrix ex
nentially converges to an exact value by increasingm even at
the BKT transition point in our method.

The size dependence of the free energyF at K51.0866,
which is regarded as the BKT transition point by Kno

FIG. 7. m dependence of the free energy obtained by
method. We use three kinds of fitting functions and obtain
smallest standard deviation by an exponential function.
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et al. @3#, is shown in Fig. 8. We use the following siz
dependence@11# of the free energy for the system with per
odic boundary conditions:

F/L; f `2
pc

6L2
, ~18!

where f ` denotes the free energy per site in the thermo
namic limit. We obtain the value of the conformal anoma
asc51.006(1), which is consistent with the value ofc at the
critical region.

The second largest eigenvalue of the transfer matrix
longs to a block withN51. Hence the smallest scaling d
mension that is equivalent toh/2 is estimated by

h/25x0
~1!5

L

2p
lnS l0

~0!

l0
~1!D , ~19!

wherelk
(n) expresses thekth eigenvalue in theN5n sector

of the transfer matrix@3#. The critical indexh describes an
algebraic decay of a correlation function in a critical regi
of interaction. At the BKT transition point, the value ofh
has to be1

4. An interaction dependence ofx0
(1) is shown in

Fig. 9. The results shown in Fig. 9 are obtained by us

FIG. 9. Interaction dependence of the smallest scaling dim
sion x0

(1) .

r
e

FIG. 8. Size dependence of the free energy of the 19-ve
model atK51.0866. The estimated value of the conformal anom
from this result isc51.006(1).
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56 3925DENSITY-MATRIX RENORMALIZATION GROUP FOR . . .
m527 for eachL. In Fig. 9 we fail to obtain the value18 of
x0

(1) if we useK51.0866: The value ofh/2 obviously ap-
pears to be smaller than 1/8 atK51.0866.

We investigate anm dependence ofx0
(1) at K51.0866 and

K51.0500 up tom5120. Examples of extrapolations t
large values ofm by using the exponential function ar
shown in Fig. 10. We defineym

(N) by

ym
~N![

L

2p
lnl0,m

~N! , ~20!

where l0,m
(N) is the largest eigenvalue of the transfer mat

with the value of arrowsN constructed by taking account o
m states of the density matrix. In order to obtain results t
are equivalent to an exact diagonalization, we need a la
value of m, i.e., m5319, for the largest system sizeL540,
which we treat. Therefore, we extrapolate the obtained
sultsym

(N) to m5` in Fig. 10. In Fig. 10 dashed lines are th
results of fitting by using values obtained fromm570, 81,
100, and 120. The dotted lines are results of fitting by us
values fromm550, 70, 81, 100, and 120. The differenc
between the results obtained from these two extrapolation
shown as errors in Fig. 10. We evaluate the value ofx0

(1) by
y`

(0)2y`
(1) and obtain the value x0

(1)50.1255(1) at
K51.0500 forL540.

In Figs. 11 and 12 we show the size dependences ofx0
(1)

at K51.0866 andK51.0500, respectively. All points show
in Figs. 11 and 12 are values estimated from extrapolati
of m as explained above. We observe that the value ofx0

(1)

goes to a finite value for largeL. The extrapolated value i
about 0.1175 and obviously less than 1/8 atK51.0866.
Therefore,K51.0866 is in the critical region. On the othe
hand, it is found that the size dependence ofx0

(1) at
K51.0500 is stronger than that atK51.0866, as shown in
Fig. 12. In addition, the value ofx0

(1) increases beyond 1/8 a
the system sizeL increases. This result indicates th
K51.0500 is out of the critical region.

FIG. 10. m dependences ofym
(N) at K51.0500 forL540.
t
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Thus these results atK51.0866 andK51.0500 suggest
that the critical value ofK of the 19-vertex model is betwee
K51.0500 andK51.0866. The determination of a precis
value of the critical pointKc is an interesting problem. How
ever, this problem is beyond the purpose of the pres
study. A further investigation for this point is left as a futu
problem.

V. SUMMARY

We have succeeded in reducing enormously the dim
sion of the matrix to be diagonalized in the DMRG meth
for the 19-vertex model by using the ice rule. It has be
found that them dependence of the free energy shows
exponential convergence even near the BKT transition p
by using our method. An accurate result is obtained for
conformal anomaly, i.e.,c51.006(1) near the BKT transi
tion point, by means of the present approach.

From the size dependence of the smallest scaling dim
sion x0

(1) (5h/2) we have found thatK51.0866 belongs to

FIG. 11. Size dependence ofx0
(1)5h/2 atK51.0866. The value

of x0
(1) is expected to be 0.1175(5) for largeL, which is obviously

below the 1/8 expected for the BKT transition point. The dash
line is just a guide for the eye.

FIG. 12. Size dependence ofx0
(1)5h/2 at K51.0500. We ob-

serve a stronger size dependence than that atK51.0866 and find
that the value is beyond 1/8. The dashed line is just a guide for
eye.
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the critical region. However, the estimated value ofh/2 is
smaller than 1/8. On the other hand, our results
K51.0500 suggest that the value ofh/2 is larger than 1/8.
These results mean that the critical point of the 19-ver
model is betweenK51.0500 andK51.0866. A further in-
vestigation for this point is left as a future problem.
J.
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